When a synchronous motor is loaded to a varying load, the rotor of the motor falls back by certain angle behind the revolving magnetic field. As the load on the motor is progressively increased, this angle also increases so as to produce necessary torque required to cope up with the load. If the load is suddenly decreased, the motor is immediately pulled up or advanced to a new value corresponding to new load. But in this process the rotor overshoot, hence it is again pulled back. In this way the rotor starts oscillating about its new position of equilibrium corresponding to a new load. If the time period of this oscillation happens to be equal to natural time period of the machine, the mechanical resonance is set up.
When a synchronous motor is loaded to a varying load, the rotor of the motor falls back by certain angle behind the revolving magnetic field. As the load on the motor is progressively increased, this angle also increases so as to produce necessary torque required to cope up with the load. If the load is suddenly decreased, the motor is immediately pulled up or advanced to a new value corresponding to new load. But in this process the rotor overshoot, hence it is again pulled back. In this way the rotor starts oscillating about its new position of equilibrium corresponding to a new load. If the time period of this oscillation happens to be equal to natural time period of the machine, the mechanical resonance is set up.
No comments:
Post a Comment